Ebulliometric Determination of %Alcohol in Wine

Ebulliometry involves the measurement of the decrease in the boiling point (BP) caused by the presence of alcohol in a wine sample. Because the boiling point of a solution also varies with atmospheric pressure, the effects of ethanol are evaluated relative to the boiling point of a control sample of distilled water (determined under identical conditions). The relationship between Δt ($\mathbf{BP}_{water} - \mathbf{BP}_{wine}$) and the %alcohol in the original wine sample is depicted in Figure E-1.

Procedure

Step 1: Determination of Boiling Point of Wine Sample (1:1 dilution)

- a. Add 100ml of distilled water to boiling flask
- b. Add 100ml of wine sample to boiling flask (1:1 dilution)
- c. Insert temperature probe into central port of boiling flask (see Fig E-2). Tip of temperature probe should be submerged approximately 1 inch.
- d. Attach condenser to boiling flask.
 Connect hoses and turn-on cooling water (slow but steady flow rate).
- e. Turn-on heating mantle to highest setting.
- Monitor temperature increases.
 Begin recording temperature at 15-sec intervals once it exceeds 90°C.
- g. Boiling point is reached when temperature remains unchanged for 3 consecutive samples.
- h. Record boiling point for diluted wine sample (BP_{wine}).

Step 2: Determination of Boiling Point for Distilled Water (Atmospheric Control)

- a. Allow apparatus to cool.
- b. Thoroughly rinse out contents of the boiling flask.
- c. Add 200ml of distilled water to the boiling flask.
- d. Determine boiling point using same procedure described in Step 1 above. Record **BP**_{water}. Note: Cooling condenser not needed for Step 2 as there is no risk of alcohol evaporation.

Step 3. Compute %Alcohol Estimate

a. Determine difference in boiling points (Δt) as follows:

$$\Delta t = \mathbf{BP}_{water} - \mathbf{BP}_{wine}$$

b. Use Equation E-1 and Δt to determine %Alcohol in the original wine sample. Note: Figure/Equation E-1 has been adjusted to account for the 1:1 dilution of the wine.

Equation E-1.
%Alcohol =
$$0.435 + 1.6687(\Delta t) + 0.1234(\Delta t^2)$$

Note:

Residual sugar levels greater than 4% in the original wine sample may interfere with estimates of %alcohol. The effects of high residual sugar levels can be corrected by applying the following formula:

%alcohol = est. %alcohol - (%residual sugar * 0.025)

Figure E-1.
Estimated percent alcohol using a 1:1 diluted sample of wine as a function of the difference in the boiling points of the sample versus a distilled water control.

Equation E-1.
$$\text{\%Ethanol} = 0.435 + 1.6687(\Delta t) + 0.1234(\Delta t^2)$$

Ebulliometry Equipment List

100 ml pipette or graduated cylinder for collecting proper volume of wine sample Electromantle 500-ml heating mantle 500-ml 2-neck boiling flask (24/40)
Leibig condenser (24/40)
IMC 2400 precision digital thermometer
IMC 8011-2009 temperature probe
Drilled #6 rubber stopper (for temperature probe)
Laboratory stand and miscellaneous clamps
Hoses for condenser cooling water

Figure E-2. Ebulliometry Apparatus